INTERQUAL® CARE PLANNING CRITERIA
BIBLIOGRAPHY: Imaging- General 2017
McKesson Clinical Evidence Classification

References cited in the clinical content are classified according to the type of evidence presented. The class ratings, I through V, are intended to provide a classification of the evidence but are not necessarily hierarchical. Classifications appear in parentheses at the end of each reference. References followed by an (NC) are not classified; examples include pre-published research or information from government, manufacturer, laboratory, or patient education websites.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Meta-analysis, technology assessment, or systematic review</td>
</tr>
<tr>
<td>Class II</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>Class III</td>
<td>Observational or epidemiologic study</td>
</tr>
<tr>
<td>Class IV</td>
<td>Evidence-based guideline</td>
</tr>
<tr>
<td>Class V</td>
<td>Expert opinion, panel consensus, literature review, text or reference book,</td>
</tr>
<tr>
<td></td>
<td>descriptive study, case report, or case series</td>
</tr>
</tbody>
</table>

Class I

Class I sources synthesize the results of multiple studies. When quantitative synthesis is possible, meta-analyses can provide a more accurate estimate of the effect or association size than individual smaller studies can. A Class I study that finds insufficient evidence to support or refute an intervention (due to a lack of appropriate primary research) is inconclusive. A potential weakness of Class I studies is that they may only assess published research, potentially leaving their findings vulnerable to publication bias.

Class II

A randomized controlled trial (RCT) is an experimental study design in which subjects are randomly assigned to an intervention or a control group. An RCT is the gold standard for testing cause and effect relationships. Intention-to-treat analysis should be performed to account for missing data points.

Class III

Observational or epidemiologic studies can suggest an association between events or findings. These associations cannot be used to establish causality. Cross-sectional, cohort, and case-control studies are all used to identify possible risk factors. Cross-sectional studies are also used to determine the prevalence of a condition. Cohort studies are used to study incidence, the natural history of a condition, prognosis after a specific exposure, and associated harms. Nonrandomized controlled trials are sometimes used when randomization is impossible or unethical.

Class IV

Evidence-based guidelines are systematically developed recommendations for clinical practice. Evidence-based guidelines identify the methodology used to gather the evidence on which the recommendations are based. Usually, a grading system for both the quality of the evidence and the strength of the recommendations is provided. Guidelines that are evidence-based may also contain consensus recommendations in areas where evidence is lacking, but these recommendations are clearly identified and appropriately graded.

Class V

Class V references may be the best information in the absence of other evidence. Expert opinion, panel consensus, literature reviews, and descriptive studies (case reports or case series) are subject to significant bias. A case series with comparison to historical controls can be plagued with missing data, and data extraction inconsistencies are common. The use of historical controls does not address how the diagnosis of disease or its treatment has evolved over time with newer technologies or medication. Text book information may be out of date by the time the book is published.
Comparative Effectiveness Research (CER)

Citations are designated with the CER label as part of the evidence classification if the article cited is one of the following:
1. A clinical trial or other clinical study that directly compares two or more health care interventions for the same clinical scenario.
2. A systematic review that compares two or more health care interventions by synthesizing the research from previous clinical studies.

Bibliography

American College of Radiology (ACR). ACR appropriateness criteria: Breast Cancer Screening. Reston (VA): American College of Radiology; 2016. (IV)

American College of Radiology, ACR Appropriateness Criteria: radiologic management of lower-extremity venous insufficiency 2012. (IV)

Bouchelouche and Choyke. PET/Computed Tomography in Renal, Bladder, and Testicular Cancer. PET Clin 2015. 10(3):361-74. (V)

Dragosavac et al. Staging recurrent ovarian cancer with (18)FDG PET/CT. Oncol Lett 2013. 5(2):593-7. (III)

Gotzsche and Jorgensen. Screening for breast cancer with mammography. The Cochrane database of systematic reviews 2013. 6:CD001877. (I)

Harvey et al. ACR appropriateness criteria palpable breast masses. J Am Coll Radiol 2013. 10(10):742-9 e1-3. (IV)

Hillner et al. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer 2009. 115(2):410-418. (III)

Hopkins et al. Positron emission tomography as predictor of rectal cancer response during or following neoadjuvant chemoradiation. World J Gastrointest Oncol 2010. 2(5):213-7. (V)

Iyer and Lee. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol 2010. 194(2):311-321. (V)

INTERQUAL® CARE PLANNING CRITERIA Bibliography: Imaging- General 2017

Laurens and Oyen. Impact of Fluorodeoxyglucose PET/Computed Tomography on the Management of Patients with Colorectal Cancer. PET Clin 2015. 10(3):345-60. (V)

London et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol 2012. 42(4):418-30. (V)

Lu et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis 2013. 28(8):1039-47. (I)

Mittadodla et al. CT pulmonary angiography: an over-utilized imaging modality in hospitalized patients with suspected pulmonary embolism. J Community Hosp Intern Med Perspect 2013. 3(1). (III)

Nam et al. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol 2010. 116(3):389-94. (III)

Newell et al. ACR Appropriateness Criteria(R) on nonpalpable mammographic findings (excluding calcifications). J Am Coll Radiol 2010. 7(12):920-30. (IV)

Norgren et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 2007. 33 Suppl 1:S1-75. (IV)

Podoloff et al. NCCN task force report: positron emission tomography (PET)/computed tomography (CT) scanning in cancer. J Natl Compr Canc Netw 2007. 5 Suppl 1:S1-S22; quiz S23-22. (IV)

Podoloff et al. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw 2009. 7 Suppl 2:S1-26. (IV)

Rooke et al. 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline). Vascular medicine 2011. 16(6):452-76. (IV)

Sandha et al. Is positron emission tomography useful in locoregional staging of esophageal cancer? Results of a multidisciplinary initiative comparing CT, positron emission tomography, and EUS. Gastrointest Endosc 2008. 67(3):402-409. (III)

Sardanelli et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 2010. 46(8):1296-316. (IV)

Sung and Dershaw. Breast magnetic resonance imaging for screening high-risk women. Magnetic resonance imaging clinics of North America 2013. 21(3):509-17. (V)

