InterQual® Imaging Criteria: Bone & Joint

Bibliography

Change Healthcare Clinical Evidence Classification

References cited in the clinical content are classified according to the type of evidence presented. The class ratings, I through V, are intended to provide a classification of the evidence but are not necessarily hierarchical. Classifications appear in parentheses at the end of each reference. References followed by an (NC) are not classified; examples include pre-published research or information from government, manufacturer, laboratory, or patient education websites.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Meta-analysis, technology assessment, or systematic review</td>
</tr>
<tr>
<td>Class II</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>Class III</td>
<td>Observational or epidemiologic study</td>
</tr>
<tr>
<td>Class IV</td>
<td>Evidence-based guideline</td>
</tr>
<tr>
<td>Class V</td>
<td>Expert opinion, panel consensus, literature review, text or reference book, descriptive study, case report, or case series</td>
</tr>
</tbody>
</table>

Class I

Class I sources synthesize the results of multiple studies. When quantitative synthesis is possible, meta-analyses can provide a more accurate estimate of the effect or association size than individual smaller studies can. A Class I study that finds insufficient evidence to support or refute an intervention (due to a lack of appropriate primary research) is inconclusive. A potential weakness of Class I studies is that they may only assess published research, potentially leaving their findings vulnerable to publication bias.
Class II
A randomized controlled trial (RCT) is an experimental study design in which subjects are randomly assigned to an intervention or a control group. An RCT is the gold standard for testing cause and effect relationships. Intention-to-treat analysis should be performed to account for missing data points.

Class III
Observational or epidemiologic studies can suggest an association between events or findings. These associations cannot be used to establish causality. Cross-sectional, cohort, and case-control studies are all used to identify possible risk factors. Cross-sectional studies are also used to determine the prevalence of a condition. Cohort studies are used to study incidence, the natural history of a condition, prognosis after a specific exposure, and associated harms. Nonrandomized controlled trials are sometimes used when randomization is impossible or unethical.

Class IV
Evidence-based guidelines are systematically developed recommendations for clinical practice. Evidence-based guidelines identify the methodology used to gather the evidence on which the recommendations are based. Usually, a grading system for both the quality of the evidence and the strength of the recommendations is provided. Guidelines that are evidence-based may also contain consensus recommendations in areas where evidence is lacking, but these recommendations are clearly identified and appropriately graded.

Class V
Class V references may be the best information in the absence of other evidence. Expert opinion, panel consensus, literature reviews, and descriptive studies (case reports or case series) are subject to significant bias. A case series with comparison to historical controls can be plagued with missing data, and data extraction inconsistencies are common. The use of historical controls does not address how the diagnosis of disease or its treatment has evolved over time with newer technologies or medication. Text book information may be out of date by the time the book is published.

Comparative Effectiveness Research (CER)

Citations are designated with the CER label as part of the evidence classification if the article cited is one of the following:

1. A clinical trial or other clinical study that directly compares two or more health care interventions for the same clinical scenario.
2. A systematic review that compares two or more health care interventions by synthesizing the research from previous clinical studies.
Bibliography

ACR-SPR-SSR Practice Parameter for the Performance and Interpretation of Magnetic Resonance Imaging (MRI) of Bone, Joint, and Soft Tissue Infections in the Extremities 2016. (V)

ACR-SPR-SSR Practice Parameter for the Performance and Interpretation of Magnetic Resonance Imaging (MRI) of the Knee. 2015. (V)


American College of Radiology. ACR appropriateness criteria: chronic foot pain. Reston (VA): American College of Radiology; 2013. (IV)


American College of Radiology. ACR appropriateness criteria: Osteoporosis and Bone Mineral Density. Reston, VA: American College of Radiology; 2016. (IV)


American College of Radiology. ACR appropriateness criteria: prostate cancer-pretreatment detection, surveillance, and staging. Reston, VA: American College of Radiology; 2016. (IV)


American College of Radiology. ACR appropriateness criteria: stress (fatigue/insufficiency) fracture, including sacrum, excluding other vertebrae. Reston, VA: American College of Radiology; 2016. (IV)
American College of Radiology. ACR appropriateness criteria: suspected osteomyelitis of the foot in patients with diabetes mellitus. Reston (VA): American College of Radiology; 2012. (IV)


American College of Radiology. ACR appropriateness criteria: Suspected physical abuse. Reston, VA: American College of Radiology; 2012. (IV)

American College of Radiology (ACR). ACR appropriateness criteria: acute trauma to the foot. Reston (VA): American College of Radiology; 2014. (IV)


American College of Radiology (ACR). ACR appropriateness criteria: Chronic Extremity Joint Pain—Suspected Inflammatory Arthritis. Reston (VA): American College of Radiology; 2016. (IV)


American College of Radiology (ACR). ACR appropriateness criteria: primary bone tumors. Reston (VA): American College of Radiology; 2013. (IV)

American College of Radiology (ACR). ACR-SPR-SSR practice parameter for the performance and interpretation of magnetic resonance imaging (MRI) of the fingers and toes. Reston (VA): American College of Radiology, Society of Pediatric Radiology, and Society of Skeletal Radiology; 2013. (V)


American College of Radiology, ACR Appropriateness Criteria: stress (fatigue/insufficiency) fracture, including sacrum, excluding other vertebrae 2011 (IV)

American College of Radiology, ACR-ASER-SCBT-MR-SPR Practice Parameter For The Performance of Pediatric Computed Tomography (CT). 2014 (V)


American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of an ultrasound examination for detection and assessment of developmental dysplasia of the hip.; 2013. (IV)


Begue. Articular fractures of the distal humerus. Orthopaedics & trauma research & research: OTSR 2014. 100(1 Suppl):S55-63. (V)


Buchan et al. Imaging of postoperative avascular necrosis of the ankle and foot. Seminars in musculoskeletal radiology 2012. 16(3):192-204. (V)


Caliandro et al. Treatment for ulnar neuropathy at the elbow. The Cochrane database of systematic reviews 2012. 7:CD006839. (I)


Chhabra et al. 3-Tesla magnetic resonance imaging evaluation of posterior tibial tendon dysfunction with relevance to clinical staging. The Journal of foot and ankle surgery: official publication of the American College of Foot and Ankle Surgeons 2011. 50(3):320-8. (V)


Dempsey et al. ACR Appropriateness Criteria on Developmental Dysplasia of the Hip--Child; 2013. (IV)


Hegedus et al. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br J Sports Med 2012. 46(14):964-78. (I CER)


Khazen and Khazen. Tendoscopy in stage I posterior tibial tendon dysfunction. Foot and ankle clinics 2012. 17(3):399-406. (V)


Kroonen. Cubital tunnel syndrome. The Orthopedic clinics of North America 2012. 43(4):475-86. (V)


Lopez-Ben. Imaging of nerve entrapment in the foot and ankle. Foot and ankle clinics 2011. 16(2):213-24. (V)


Milla et al. ACR Appropriateness Criteria(R) limping child--ages 0 to 5 years. J Am Coll Radiol 2012. 9(8):545-53. (IV)


Morelli and Braxton. Meniscal, plica, patellar, and patellofemoral injuries of the knee: updates, controversies and advancements. Prim Care 2013. 40(2):357-82. (V)


Murthy. The role of magnetic resonance imaging in scaphoid fractures. J Hand Surg Am 2013. 38(10):2047-54. (V)


Nascimento et al. The role of magnetic resonance imaging in the evaluation of bone tumours and tumour-like lesions. Insights Imaging 2014. 5(4):419-40. (V)

National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology, Bone Cancer 2015. (IV)


Olausen et al. Treating lateral epicondylitis with corticosteroid injections or non-electrotherapeutical physiotherapy: a systematic review. BMJ open 2013. 3(10):e003564. (I)


Pappapolous et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos Int 2015. 26(12):2773-83. (III)


Roy. Electrodiagnostic evaluation of lower extremity neurogenic problems. Foot and ankle clinics 2011. 16(2):225-42. (V)


Scott. Denosumab: a review of its use in postmenopausal women with osteoporosis. Drugs Aging 2014. 31(7):555-76. (V)


The International Society for Clinical Densitometry. Official Positions of the ISCD for Adults and Pediatrics: The International Society for Clinical Densitometry; 2015. (IV)


Tse et al. Arthroscopic reconstruction of triangular fibrocartilage complex (TFCC) with tendon graft for chronic DRUJ instability. Injury 2013. 44(3):386-90. (III)


Werner. Electrodiagnostic evaluation of carpal tunnel syndrome and ulnar neuropathies. PM R 2013. 5(Suppl):S14-21. (V)

Wiewiorski et al. Chondral and osteochondral reconstruction of local ankle degeneration. Foot and ankle clinics 2013. 18(3):543-54. (V)


Zhuang et al. MRI features of soft-tissue lumps and bumps. Clinical radiology 2014. 69(12):e568-83. (V)